Researchers can now design and mass-produce genetic material — a technique that helped build the mRNA vaccines. What could it give us next?
...In a way, that future has arrived. Gene synthesis is behind two of the biggest “products” of the past year: the mRNA vaccines from Pfizer and Moderna. Almost as soon as the Chinese C.D.C. first released the genomic sequence of SARS-CoV-2 to public databases in January 2020, the two pharmaceutical companies were able to synthesize the DNA that corresponds to a particular antigen on the virus, called the spike protein. This meant that their vaccines — unlike traditional analogues, which teach the immune system to recognize a virus by introducing a weakened version of it — could deliver genetic instructions prompting the body to create just the spike protein, so it will be recognized and attacked during an actual viral infection.
As recently as 10 years ago, this would have been barely feasible. It would have been challenging for researchers to synthesize a DNA sequence long enough to encode the full spike protein. But technical advances in the last few years allowed the vaccine developers to synthesize much longer pieces of DNA and RNA at much lower cost, more rapidly. We had vaccine prototypes within weeks and shots in arms within the year.
Now companies and scientists look toward a post-Covid future when gene synthesis will be deployed to tackle a variety of other problems. If the first phase of the genomics revolution focused on reading genes through gene sequencing, the second phase is about writing genes. Crispr, the gene-editing technology whose inventors won a Nobel Prize last year, has received far more attention, but the rise of gene synthesis promises to be an equally powerful development. Crispr is like editing an article, allowing us to make precise changes to the text at specific spots; gene synthesis is like writing the article from scratch...
https://www.nytimes.com/2021/11/24/magazine/gene-synthesis.html?smid=em-share
No comments:
Post a Comment